Supplementary material

Supplementary Methods

Adenovirus production

The Fc domain, containing mutations in the IgG-R and complement binding domains, was amplified by PCR from an IL-10-Fc fusion plasmid (generously provided by Dr Terry Storm, Harvard University, USA). The extracellular domain of mouse N-cadherin was cloned with the Fc domain into pDC515 (Microbix). The secretion signal was cloned from full length N-cadherin onto the Fc fragment and cloned into pDC515. Both were recombined with the adenovirus genomic plasmid by co-transfection into 293 cells. The resultant adenoviruses were termed RAd SNC-Fc and RAd Fc (control). This chimeric molecule comprised of SNC and an antibody constant domain, enables protein A binding, as well as extending plasma half-life¹⁻³ and possibly increasing receptor–ligand interaction. Such immunoadhesins have use *in vivo* as potential therapeutic agents⁴.

Purification and culture of mouse blood monocytes

Mouse peripheral blood monocytes were purified by Ficoll-Hypaque gradient (Ficoll-Paque Plus: Amersham Biosciences), followed by differential adherence and culture in 20ng/ml M-CSF for 7-10 days to induce differentiation into macrophages.

Purification of rabbit foam cell-macrophages

New Zealand White rabbits (Harlan, UK) fed a 1% cholesterol-supplemented diet had sterile sponges placed under the dorsal skin to generate foam cell macrophages, as described⁵.

siRNA Knockdown

Two HP validated silencing RNA oligonucleotides (siRNA) for FGF-R1 and control (Allstars Negative control siRNA) were purchased from Qiagen (catalogue numbers Sl02224677, Sl02224684 and 1027281). VSMCs (8x10⁵) were subjected to Amaxa nucleofection with

250pmol of FGF-R1 or control siRNAs using the VSMC kit and U-25 program following the manufacturer's instructions (Amaxa, Inc., Cologne Germany). Treated cells were analysed 24 hours after nucleofection. Knockdown of FGF-R was estimated as 85±7% (n=3, p<0.05) by quantitative PCR and was confirmed by immunocytochemistry (data not shown).

Western blotting

SDS lysed cell extracts were subjected to Western blotting as described previously⁶. Blots were incubated overnight at 4°C with primary antibodies diluted in Starting block (Pierce, Chester, UK). Antibodies were used at the following concentrations: total and pAkt (Cell Signalling, 1:1000). Bound antibodies were detected by rabbit anti-mouse horseradish peroxidase conjugated antibodies (Dako, High Wycombe, UK) and enhanced chemiluminescence (Amersham International, Little Chalfont, UK).

Galactolight assay

TOPgal transgenic mouse VSMCs were grown from aortic explants, as described previously⁷. These VSMCs contain the β -galactosidase gene under the control of the β -catenin promoter. TOPgal VSMCs were treated with 0.01% (w/v) trypsin, 1 mM CaCl₂, in PBS) and seeded into a 24 well plate in the presence of SNC-Fc or Fc and Fas-L. β -galactosidase activity was quantified using a chemiluminescent assay called Galactolight as described by the manufacturer's instructions (Tropix).

Aggregation and adhesion assays

Cell aggregation and cell-cell adhesion were determined as previously^{8, 9}.

Invasion of monocytes and proliferation of macrophages

Mouse peripheral blood monocyte invasion and macrophage proliferation were assessed as previously¹⁰.

Quantitative PCR

Total RNA was isolated by the RNAeasy kit (Qiagen) was reverse transcribed and subjected to quantitative PCR for N-cadherin and FGF-R using Quantitect primers (Qiagen, QT00102837and QT00198548, respectively) as described by the manufacturer.

In vivo experiments

Quantification of plasma SNC-Fc and lipoprotein levels

Plasma samples were taken at 2, 6, 8, 14 and 28 days after RAd administration and levels of SNC-Fc were analysed by ELISA as described previously⁶. Plasma lipid profiles were analyzed in terminal plasma samples as previously described¹¹.

Immunohistochemistry

VSMCs, macrophages, and proliferating and apoptotic cells were identified by immunohistochemistry for α -smooth muscle cell actin, Mac-2, proliferating cell nuclear antigen (PCNA) and CC-3 as described previously ¹⁰. Fluorescent immunohistochemistry for pAkt was performed using rabbit anti-pAkt antibody (Cell Signalling) diluted 1:25. Fluorescent dual immunohistochemistry for Mac-2 and N-cadherin or FGF-R1 was performed on control atherosclerotic plaques using 5 μ g/ml rat anti-Mac-2 (Cedar Lane) and 2 μ g/ml rabbit anti-N-cadherin (Santa Cruz) or rabbit anti-FGF-R1 (Cell Signalling) diluted 1:12.5.

In situ end labelling and actin dual immunohistochemistry

Apoptotic cells were identified by *in situ* end labelling (ISEL), performed as previously described¹². This was followed by the smooth muscle α -actin immunohistochemisty protocol outlined above.

Identification of buried fibrous caps

Serial sections stained for elastin and α -smooth muscle cell actin were examined for the presence of structures rich in elastin and VSMCs and these were identified as buried fibrous caps, a surrogate marker of previous plaque instability, as previously described ¹³.

References

- Capon DJ, Chamow SM, Mordenti J, Marsters SA, Gregory T, Mitsuya H, Byrn RA, Lucas C, Wurm FM, Groopman JE, Broder S, Smith DH. Designing CD4 immunoadhesins for AIDS therapy. *Nature*. 1989;337:525.
- Zheng XX, Steele AW, Nickerson PW, Steurer W, Steiger J, Strom TB. Administration of noncytolytic IL-10/Fc in murine models of lipopolysaccharide-induced septic shock and allogeneic islet transplantation. *J Immunol.* 1995;154:5590-5600.
- Barrou B, Bertry-Coussot L, Morin S, Sainz J, Lucas B, Bitker MO, Debre P, Lemarchand
 P. Prolonged Islet Allograft Survival by Adenovirus-Mediated Transfer of sICAM-1/lg
 Immunoadhesin Gene. Human Gene Therapy. 2002;13:1441-1450.
- Chamow SM, Ashkenazi A. Immunoadhesins: principles and applications. *TIBTECH*.
 1996;14:52-60.
- Chase AJ, Bond M, Crook MF, Newby AC. Role of nuclear factor-kB activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. *Arterioscler Thromb Vasc Biol.* 2002;22:765-771.
- Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC,
 George SJ. Dismantling of cadherin-mediated cell-cell contacts modulates smooth
 muscle proliferation. *Circ Res.* 2003;92:1314-1321.
- Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ.
 Regulation of smooth muscle cell proliferation by b-catenin/TCF signaling involves modulation of cyclin D1 and p21 expression. *Circ Res.* 2006;99:1329-1337.

- 8. Shan WS, Yagita Y, Wang Z, Koch A, Svenningsen AF, Gruzglin E, Pedraza L, Colman DR. The minimal essential unit for cadherin-mediated intercellular adhesion comprises extracellular domains 1 and 2. *J Biol Chem.* 2004;279:55914-55923.
- Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P.
 ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and b-catenin nuclear signalling. *EMBO J.* 2005;24:742-752.
- Johnson JL, Baker AH, Oka K, Chan L, Newby AC, Jackson CL, George SJ. Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: involvement of macrophage migration and apoptosis. *Circulation*. 2006;113:2435-2444.
- 11. Johnson J, Jackson C. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. *Atherosclerosis*. 2001;154:399-406.
- George SJ, Johnson J, Angelini G, Newby A, Baker A. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits SMC migration and neointima formation in human saphenous vein. *Hum Gene Ther.* 1998;9:867 - 877.
- Johnson J, Carson K, Williams H, Karanam S, Newby AC, Angelini GD, George SJ,
 Jackson C. Plaque rupture after short periods of fat feeding in the apolipoprotein E
 knockout mouse. Model characterization and effects of pravastatin treatment. *Circulation*.
 2005;111:1422 1430.

Supplementary Figure Legends

Supplementary Figure I: <u>The pro-survival effect of SNC requires the HAV motif.</u>

Percentage of apoptotic VSMC (CC-3 ICC) 24 hours after FasL treatment with peptide (n=3).*significant difference from Fc control, \$significant difference from HAV.

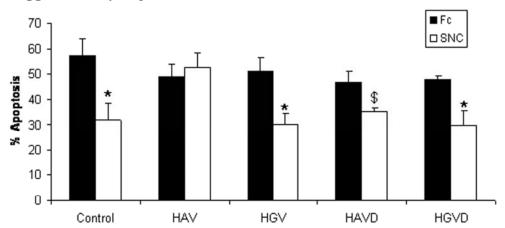
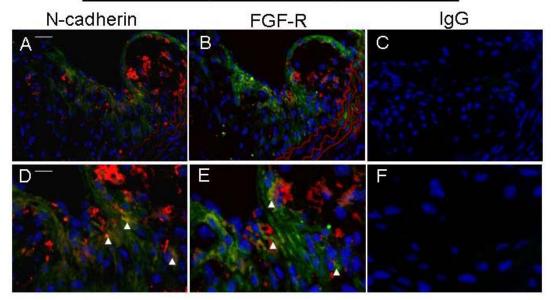
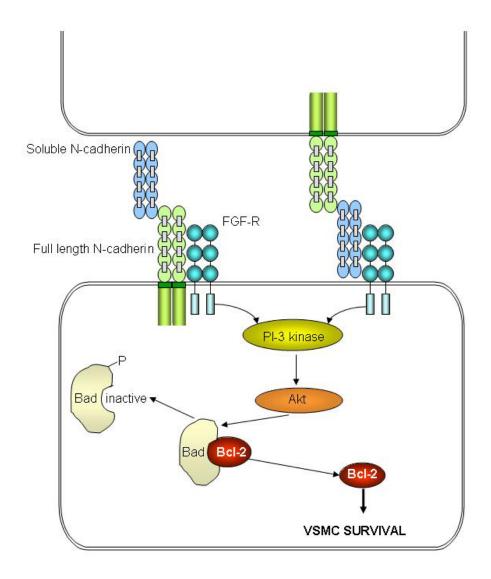

Supplementary Figure II: Expression of N-cadherin and FGF-R1 in monocytes and macrophages.

Table shows quantitative PCR results for N-cadherin and FGF-R1 in monocytes, macrophages and VSMCs expressed as copy number of mRNA.

Images show representative dual immunohistochemistry for N-cadherin (A, D) or FGF-R1 (B, E) in green and macrophages in red in PBS control atherosclerotic plaque. Arrowheads indicate macrophages expressing N-cadherin or FGF-R. Scale bar in panel A represents 50 μm and applies to panels A-C. Scale bar in panel D represents 15 μm and applies to panels D-F. Non-immune IgG is shown as negative control (C, F). Nuclei are stained blue with DAPI.


Supplementary Figure III: Schematic diagram of the mechanism of action of SNC SNC may interact with full length N-cadherin which in turn binds to FGF-R or it may bind directly with FGF-R and full length N-cadherin. These interactions activate PI3-kinase and thereby activate Akt. Active Akt phosphorylates Bad which inhibits the interaction with Bcl-2, released Bcl-2 then provides a survival signal for VSMCs, inhibiting apoptosis.

Supplementary Figure I



Supplementary Figure II

Copy number of mRNA	N-cadherin	FGF-R1
Monocytes	13.7±13.7 (n=4)	4.2±2.3 (n=3)
Macrophages	1104±449 (n=4)	6.0±4.5 (n=3)
VSMCs	1707±871 (n=6)	168±76 (n=3)

Supplementary Figure III

